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The marked biogeographic difference between western (Malay
Peninsula and Sumatra) and eastern (Borneo) Sundaland is surpris-
ing given the long time that these areas have formed a single
landmass. A dispersal barrier in the form of a dry savanna corridor
during glacial maxima has been proposed to explain this disparity.
However, the short duration of these dry savanna conditions make
it an unlikely sole cause for the biogeographic pattern. An addi-
tional explanation might be related to the coarse sandy soils of
central Sundaland. To test these two nonexclusive hypotheses,
we performed a floristic cluster analysis based on 111 tree inven-
tories from Peninsular Malaysia, Sumatra, and Borneo. We then
identified the indicator genera for clusters that crossed the central
Sundaland biogeographic boundary and those that did not cross
and tested whether drought and coarse-soil tolerance of the indi-
cator genera differed between them. We found 11 terminal floristic
clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular
Malaysia. Indicator taxa of clusters that occurred across Sundaland
had significantly higher coarse-soil tolerance than did those from
clusters that occurred east or west of central Sundaland. For
drought tolerance, no such pattern was detected. These results
strongly suggest that exposed sandy sea-bed soils acted as a dis-
persal barrier in central Sundaland. However, we could not confirm
the presence of a savanna corridor. This finding makes it clear that
proposed biogeographic explanations for plant and animal distri-
butions within Sundaland, including possible migration routes for
early humans, need to be reevaluated.
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Together with the Amazon Basin, Congo Basin, and New
Guinea, Southeast Asia’s Sundaland forms one of the world’s

largest equatorial tropical forests (1). The present-day insular
nature of this region is unrepresentative of the historical situa-
tion because most of the time the area formed a single landmass
as a result of lowered sea levels associated with global cooling
events (2–5). Despite this long history of land connections, there
exists a marked biogeographic boundary between western
(Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland
(3, 5, 6). These differences have been explained by a hypothe-
sized north-south–oriented savanna corridor through the center

of Sundaland that blocked dispersal of wet forest species (7–13).
Although there is strong evidence for drier conditions within the
region during the last glacial period (10, 12–15), the presence of
a continuous north-south savanna corridor through the center of
Sundaland remains controversial, and most coupled vegetation–
climate reconstructions contradict this possibility (4, 16–20).
Furthermore, the savanna-corridor hypothesis is based on the
climatic conditions during glacial maxima when land area was
maximal. This situation existed for only 17% of time during the
last 250,000 y (2), making it unlikely that it is solely responsible
for the observed biogeographic pattern in Sundaland.
Another explanation for the biogeographic boundary in cen-

tral Sundaland relates to the soil conditions of the exposed sea
floor (12). The current topsoil texture map of the region (21)
shows that coarse-textured, often poorly drained soils are a
common feature of the central part of the region (Fig. 1). These
soils limit plant growth because they are extremely nutrient poor;
they currently support peat swamp on poorly drained sites and
heath forests on well-drained sites, both with a distinct species
composition, generally low productivity, and poor diversity
compared with the richer lowland forests on fine-textured, more
nutrient-rich and better-drained soils (22). Sediments of the
central Sunda Shelf sea bed also consist of these coarse-textured
sands (12, 23, 24). Palynological data from east of Natuna Island
(25) contain more common Poaceae pollen than any equatorial
pollen sites do, suggesting that poorly drained areas of the Sunda
Shelf were covered with extensive grass-dominated fresh-water
swamps during periods of lowered sea levels. For most of the
time, the connection between eastern and western Sundaland
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ran through this coarse sandy exposed sea bed (Fig. 1) (2), which
could have formed an enduring dispersal barrier to taxa ill
adapted to these conditions.
Capitalizing on a unique database of 111 forest tree inventories

from the region, we try to renew the discussion on the observed
biogeographic differences between western and eastern Sundaland
by testing both the climate and soil dispersal barrier hypotheses.
Because a dispersal barrier based on soil properties assumes
a different dispersal-limitation mechanism than one based on cli-
mate does, it should result in recognizable floristic signatures. A
drier central Sundaland with a savanna corridor (hypothesis 1)
should act as a filter blocking drought-intolerant tree species while
letting drought-tolerant species pass, whereas a central Sundaland
characterized by coarse-textured sandy soils (hypothesis 2) should
block tree species adapted to fine-textured soils while letting taxa
adapted to coarse soil pass. By looking at the drought and coarse-
soil texture tolerance of the genera characteristic of floristic clus-
ters that cross central Sundaland and those that are restricted to
either side of it, we can thus gain insight into the processes that
shaped the biogeographic patterns.

Results
The final floristic data set of 111 locations and 280 genera
resulted in a dendrogram with 11 terminal clusters (Fig. S1), with
10 (5 unique) in Borneo, 5 (none unique) in Sumatra, and 3 (1
unique) in Peninsular Malaysia (Fig. 2). Five floristic clusters
crossed the central Sundaland biogeographic barrier, and six were
found either west or east of this boundary. For the floristic
clusters that crossed the biogeographic boundary, we found 12
indicator genera versus 39 found for the clusters that did not cross
(Dataset S1). The indicator genera of the crossing floristic clus-
ters had a significantly higher coarse-soil tolerance than did the
indicator genera of clusters that did not cross the biogeographic
boundary [0.67 ± 0.15 versus 0.44 ± 0.18 (mean ± SD), for

crossing and noncrossing indicator genera, respectively; F ratio =
16.9, P = 0.0002]. For drought tolerance, on the other hand, no
significant difference was found [0.50 ± 0.16 versus 0.56 ± 0.21
(mean ± SD), for crossing and noncrossing indicator genera,
respectively; F ratio = 1.0, P = 0.327].

Discussion
Soil Dispersal Barrier in Central Sundaland. Our results provide ev-
idence that the exposed sea-bed soils may have played a role as
dispersal barrier in central Sundaland. The special character and
potential impact on plant species distributions of the currently
submerged soils of central Sundaland have been noted before (4,
12) but have not yet been taken seriously as a dispersal barrier. A
soil dispersal barrier also makes sense in a historical perspective
because, unlike the hypothesized savanna corridor, the soil con-
ditions would have been present in central Sundaland whenever
sea levels dropped enough to expose the current shelf area.
During the Pleistocene, this was the case for hundreds of thou-
sands of years (2), more than enough time to cause a detectable
biogeographic signal. Based on our reinterpretation of recent
data (26), a likely vegetation type for the former soils of the
submerged Sunda Shelf would have been heath forest on well-
drained sandy soils, with kerapah peat swamps on poorly drained
interfluves, and with herb-dominated swamp vegetation for areas
that experienced some degree of climatic seasonality to the north,
e.g., in the vicinity of Natuna. The region of the Java sea is more
likely to have borne seasonal climate vegetation based on the
palynological record from the southern part of the Makassar
Straits, which shows the presence of widespread grass-dominated
vegetation throughout the last glacial period (marine isotope
stages 2–4, 16–74 ka) with extensive burning, as shown by char-
coal records, from ∼16 to 37 ka (27, 28). Heath forests and
kerapah peats in the equatorial region between Sumatra and
Borneo, herbaceous swamps in low-lying areas of the Natuna

- 40 m

- 120 m

Fig. 1. Composite map of Sundaland. The green and red areas indicate currently exposed land areas with coarse sandy and/or badly drained soils. The light
gray areas indicate the exposed sea bed at a sea-level lowering of 40 m, a situation that existed for more than 50% of the time during the last 250,000 y (2).
The dark gray areas indicate the coarse sandy soils on this exposed seabed (12). The dashed black line indicates the maximum land area during the Last Glacial
Maximum, when sea levels were lowered by ∼120 m. The red line indicates the potential extent of the sandy soil dispersal barrier in central Sundaland.
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region, and seasonal climate vegetation in the Java Sea area could
have acted as a dispersal barrier for plants and animals not
adapted to such soils or vegetation types. Indeed, current heath
and swamp forests are characterized by a limited mix of tree
species of the surrounding forests, resulting in much reduced
diversity and productivity compared with lowland forests on fine-
textured and richer soils (22, 29).

What About the Savanna-Corridor Hypothesis? On the other hand,
our study provides no support for a continuous savanna corridor
in central Sundaland, which is in accordance with most coupled
vegetation–climate models (16–20), although the most recent
historical vegetation reconstruction for this region (4) includes
a savanna corridor in some models. However, this outcome could
only be achieved by a priori forcing of a continuous corridor into
these models (4). These outcomes do not mean that the savanna
corridor did not exist because there is strong evidence for drier,
savanna-like or seasonal conditions north and south of central
Sundaland in the Pleistocene (10, 12–15, 30, 31). However, if it
existed, it left no clear floristic evidence among current tree
populations. One reason for this lack of evidence could be that
the wetter climates that prevailed during interglacial periods have
led to the disappearance of the drought-tolerant taxa from Bor-
neo, Sumatra, and Peninsular Malaysia, thus erasing any floristic
evidence for a savanna corridor in these areas. Another reason
could be that, even if there was a continuous savanna corridor in
central Sundaland, it probably occurred during conditions of
maximum sea-level retreat. This situation existed for only short
periods of time during the Pleistocene (2), making it unlikely that

it is solely responsible for the observed biogeographic patterns
in Sundaland.

Floristic Diversity Patterns in Sundaland. Another interesting out-
come of our analysis is the high floristic diversity of Borneo
compared with other Sundaland areas, with Borneo harboring 10
of the 11 identified floristic clusters (5 endemic), Sumatra 5
(none endemic), and Peninsular Malaysia only 3 (1 endemic).
Even when Sumatra and Peninsular Malaysia are combined, they
still only harbor 6 of the 11 identified floristic clusters, 5 of which
are shared with Borneo. This pattern, which has recently also
been demonstrated for bird species (6), probably largely reflects
the longevity of everwet climate forests on Borneo (4, 28).
Glacial–interglacial forest expansions and contractions seem to
have had the most negative impact on lowland forests of Sumatra
and Peninsular Malaysia because, compared with their present
day potential extent, their size was small during glacial periods
(3, 4). This small forest size might have resulted in the disap-
pearance of some unique lowland floristic associations. Addi-
tionally, for parts of Sumatra and especially Peninsular Malaysia,
considerably drier conditions existed during glacial periods (10,
12–15), which might have negatively affected their lowland
everwet forest types. Borneo, on the other hand, has had a rela-
tively stable everwet climate at its core and in most of the low-
land coastal areas with the exception of the south and northeast,
which might explain why it maintained so many unique lowland
forest types (4, 12, 15, 28, 32).
Another possibility explaining the low floristic diversity of

lowland forests on Sumatra could be related to the underre-
presentation of eastern Sumatran locations, which might have
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Fig. 2. Spatial distribution of the 111 forest inventory locations with their floristic affinities indicated by the color scheme in the dendrogram and the map.
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affected our results because this area is one of the largest low-
land forest regions within Sundaland. Unfortunately, it is also
one of the most deforested areas within Sundaland, which means
that getting inventory data from undisturbed forests of this re-
gion is almost impossible. Although older inventory studies
probably exist, they are difficult to access because they are
published in local reports. Therefore, Sumatra might eventually
turn out to harbor more floristic diversity than is detected by
our study.

Migration of Early Humans Through Sundaland. The presence of
a savanna corridor in central Sundaland has been used as an
argument for the rapid dispersal of early humans (between ca.
60,000 and 45,000 y ago) from mainland Southeast Asia and
central Sundaland to Java and then onward to eastern Indonesia,
Papua New Guinea, and Australia (12). However, the presence
of swamps and heath forests in central Sundaland, as suggested
by our study, would not favor this human-dispersal route because
swamps and heath forests, aside from being hard to traverse, are
generally low-productivity systems with limited wildlife and other
edible products for hunter-gatherers (22). It would be more
likely that humans used the coastal routes along Sundaland to
reach Java and beyond (33, 34), especially because, during this
period, large parts of central Sundaland would have been sub-
merged by sea, leaving only a small land area in central Sunda-
land as a land connection (2).

Conservation Issues. Our study underlines the conservation im-
portance of lowland forests because they contain floristic associ-
ations that are unique and among the most threatened in South-
eastAsia. In Borneo, only a fraction of the identified lowland
forest types are protected (35). Moreover, they are mostly ex-
cluded from the Heart of Borneo program, which is especially
focused on hill and montane forests. In Sumatra and Peninsular
Malaysia, the ongoing loss of forest is critical (36, 37). In special
need of conservation are kerapah swamps, which form one of the
oldest plant communities in the region and can be followed back
in time to the Oligocene. Throughout the region, there is con-
siderable pressure to convert forests to oil palm, pulp, and other
industrial plantations even though many deforested areas, espe-
cially in Sumatra, remain unused (38, 39). Additionally, existing
lowland forest reserves, especially in Indonesia, provide no
guarantee for good forest protection because remote-sensing
studies have shown that serious forest degradation, fires, and even
clearance are occurring within their boundaries (40, 41). Our
results strongly underline the need to focus conservation priori-
ties in Southeast Asia toward better protection of lowland forest
systems before most of them have disappeared.

Methods
Floristic Analysis. We used tree inventory data for 111 locations across Sun-
daland (Fig. 2 and Dataset S2), which were centered on an underlying grid of
∼10 × 10 km that corresponded to our climate and soil layers (see below).
Each of our locations thus represents the pooled trees from plots that fell

within such grid cells. Most of these locations contained many morphospe-
cies, making direct comparisons between locations based on species-level
identifications impossible. Therefore, we based our floristic analysis on gen-
era only, which not only improves the identification accuracy but has also
been shown to reflect species-level floristic patterns well (42). For each lo-
cation, we ranked genera from high to low abundance and selected the 30
most abundant genera for the floristic analysis because selection of a fixed
number of genera makes floristic comparisons depend less on sample size. In
cases where more than 30 genera were selected because of equal genus
abundances, we randomly excluded genera from the lowest abundance class
until we had selected 30 genera. In some cases, there were fewer than 30
genera present in a location. We decided to retain these locations because
they usually represented low-diversity forest types such as heath, peat
swamp, and montane forests. Overall, 30 genera represented between 54.8%
and 100% of individuals from each inventory [77.7 ± 11.3% (mean ± SD)]. We
used relative abundances of genera (number of individuals divided by total
number of individuals in each inventory) to make the locations comparable.
The final matrix, containing all locations and the relative abundances of their
genera, was used in a cluster analysis (data were log 10-transformed to re-
duce impact of abundant genera) using minimal-variance clustering.

Indicator Genera Analysis. To determine the characteristic genera for each
cluster in the floristic analysis, we used an indicator method (43). This method
calculates an indicator value (IV) for each genus in predefined clusters (like
the clusters identified by a floristic analysis). Only genera that have a high
mean abundance and are present in the majority of locations of a cluster (and
have low abundance and frequency outside of that cluster) will score a high
IV. To test whether the observed IV of a genus in a cluster was significantly
higher than could be expected based on a random distribution of individuals
over the locations, the observed IV was compared with 999 randomly gen-
erated IVs. These random IVs were generated by a reallocation procedure in
which the number of individuals per genus was randomly reshuffled over the
locations (43). If the observed IV of a genus in a cluster fell within the top 5%
of the random IVs (sorted in decreasing order), it was considered to deviate
significantly from the random distribution. Indicator taxa were mapped on
the dendrogram (Fig. S2).

Testing Indicator Taxa Drought and Coarse-Soil Tolerance. Drought and coarse-
soil tolerance of generawere determined by sorting the 111 study locations by
their annual rainfall (WorldClim, http://www.worldclim.org) and subsoil tex-
ture values taken from the Food and Agriculture Organization of the United
Nations’ TERRASTAT: Global Land Resources GIS Models and Databases for
Poverty and Food Insecurity Mapping (21) (Fig. S3). Drought tolerance per
genus was calculated as the abundance in the 50% driest sites divided by
total abundance over all sites. Similarly, coarse-soil tolerance per genus was
calculated as the abundance in the 50% coarsest soil sites divided by total
abundance over all sites. Therefore, the higher the value (scaled between
0 and 1), the more tolerant a genus is to drought or coarse soil (the whole list
is in Dataset S1). We then tested (one-way ANOVA) whether the means of the
drought and coarse-soil tolerance values of the indicator taxa differed sig-
nificantly between floristic clusters that crossed the dispersal barrier versus
those that did not cross. Some indicator taxa occurred in several clusters. In
those cases, we used only the data (cross or not cross central Sundaland) from
the cluster where it scored its highest IV.
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